所谓二分图(Bipartite Graph)就是这样的一个图:
简单地说,就是一张图里的所有点可以分为两组(如上图),并且每条边都跨越两组。这样的图就是二分图。
据说很多公司都有这样一道面试题:给你几个 G 的字符串,让你想办法快速地找出其中的很多个需要和谐的敏感词。
这个问题里,如果“需要和谐的字符串”称为“模式串”,“待被查的字符串”称为文本串。对于这样的问题,如果暴力做,复杂度就是 $\Theta(N \ast M \ast Len)$……用 AC 自动机这种高级的算法,可以在 $\Theta (N)$ 左右复杂度内得出答案。Excited!
如果告诉你在一个三角形中,$B-A \leqslant c, C-B \leqslant a, C-A \leqslant b$,怎么求 $C-A$ 的最大值呢?通过yy观察可以发现,$C-A$ 的最大值是 $min(a+c,b)$。这个答案如何得出?将这个三角形内的约束条件推广到更多约束条件呢?
在一幅无向图中,如果删除了一个点,导致图分成了两个或多个联通块(强连通分量),那么这个点就是割点。怎么求这样的点呢?最原始暴力的方法就是每次枚举一个点,删除,跑一遍最短路。今天我们可以用更高级的 Tarjan 算法 $ \displaystyle \Theta (N)$ 求解。